Regulation of Bioluminescence in Photobacterium leiognathi Strain KNH6.
نویسندگان
چکیده
UNLABELLED Bacterial bioluminescence is taxonomically restricted to certain proteobacteria, many of which belong to the Vibrionaceae. In the most well-studied cases, pheromone signaling plays a key role in regulation of light production. However, previous reports have indicated that certain Photobacterium strains do not use this regulatory method for controlling luminescence. In this study, we combined genome sequencing with genetic approaches to characterize the regulation of luminescence in Photobacterium leiognathi strain KNH6, an extremely bright isolate. Using transposon mutagenesis and screening for decreased luminescence, we identified insertions in genes encoding components necessary for the luciferase reaction (lux, lum, and rib operons) as well as in nine other loci. These additional loci encode gene products predicted to be involved in the tricarboxylic acid (TCA) cycle, DNA and RNA metabolism, transcriptional regulation, and the synthesis of cytochrome c, peptidoglycan, and fatty acids. The mutagenesis screen did not identify any mutants with disruptions of predicted pheromone-related loci. Using targeted gene insertional disruptions, we demonstrate that under the growth conditions tested, luminescence levels do not appear to be controlled through canonical pheromone signaling systems in this strain. IMPORTANCE Despite the long-standing interest in luminous bacteria, outside a few model organisms, little is known about the regulation and function of luminescence. Light-producing marine bacteria are widely distributed and have diverse lifestyles, suggesting that the control and significance of luminescence may be similarly diverse. In this study, we apply genetic tools to the study of regulation of light production in the extremely bright isolate Photobacterium leiognathi KNH6. Our results suggest an unusual lack of canonical pheromone-mediated control of luminescence and contribute to a better understanding of alternative strategies for regulation of a key bacterial behavior. These experiments lay the groundwork for further study of the regulation and role of bioluminescence in P. leiognathi.
منابع مشابه
Genomic polymorphism in symbiotic populations of Photobacterium leiognathi.
Photobacterium leiognathi forms a bioluminescent symbiosis with leiognathid fishes, colonizing the internal light organ of the fish and providing its host with light used in bioluminescence displays. Strains symbiotic with different species of the fish exhibit substantial phenotypic differences in symbiosis and in culture, including differences in 2-D PAGE protein patterns and profiles of indig...
متن کاملThe stimulation of bioluminescence in Photobacterium leiognathi as a potential prescreen for antitumor agents.
The stimulation of bioluminescence in Photobacterium leiognathi has previously been described as a test for genotoxic compounds. An adaptation of this procedure has been developed which uses a dim variant of P. leiognathi and permits the prescreening of microbial fermentation broths for potential antitumor agents. Bioluminescence in this organism was stimulated by compounds which bind to DNA or...
متن کاملThe Phylogenetic Characterization of a Bioluminescent Bacterium Isolated From Shrimp
Bioluminescence, the biological production of light, is an unusual characteristic that is observed in certain members of the genera Vibrio, Photobacterium, Photorhabdus, and Shewanella. The bioluminescence system is composed of a group of proteins, including luciferase the main enzyme responsible for light production. I have isolated a bioluminescent strain of gram negative cocci from marine sh...
متن کاملComplete Genome Sequence of Photobacterium leiognathi Strain JS01
Photobacterium leiognathi is a bioluminescent symbiont of fish of the Leiognathidae family. Here, we present the full-genome sequence of P. leiognathi strain JS01, a strain isolated from a nonluminescent Loligo sp. squid of Singaporean origin. No finished genome sequence of this species is currently publicly available.
متن کاملAntimicrobial Effects of Silver Nanoparticles Stabilized in Solution by Sodium Alginate.
BACKGROUND/PURPOSE To investigate the effect of nanosilver particles in solution stabilized in a matrix of sodium alginate on the growth and development of pathogenic bacteria such as Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Proteus vulgaris, Enterobacter cloacae, the antibiotic-resistant strain of Pseudomonas aeruginosa, the yeast-like fungus Candida albicans, and the lu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 197 23 شماره
صفحات -
تاریخ انتشار 2015